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Abstract

Fast and tiny object tracking remains a challenge in computer vision and in this paper we first intro-
duce a JSON metadata file associated with four open source datasets of Fast Moving Objects (FMOs) image
sequences. In addition, we extend the description of the FMOs datasets with additional ground truth infor-
mation in JSON format (called FMOX) with object size information. Finally we use our FMOX file to test
a recently proposed foundational model for tracking (called EfficientTAM) showing that its performance
compares well with the pipelines originally taylored for these FMO datasets. Our comparison of these state-
of-the-art techniques on FMOX is provided with Trajectory Intersection of Union (TIoU) scores. The code
and JSON is shared open source allowing FMOX to be accessible and usable for other machine learning
pipelines aiming to process FMO datasets.
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1 Introduction

The tracking and detection of small and/or fast-moving objects (FMOs) remains relatively underexplored,
particularly in comparison to research on general objects [Zhang et al., 2022]. Specific challenges occur in
such scenarios including motion blur, which can distort the appearance of objects and complicate the perfor-
mance of general object detectors and trackers. Moreover, data annotation becomes more difficult due to the
size and motion blur of FMOs, leading to a scarcity of available annotated datasets [Zhang et al., 2022, Yu
et al., 2020, Rozumnyi et al., 2017]. Despite these issues, several public FMO datasets, including Falling Ob-
ject [Kotera et al., 2020], FMOv2 [Rozumnyi et al., 2017], TbD [Kotera et al., 2019], and TbD-3D [Rozumnyi
et al., 2020] are now available (see Section 2). Unlike larger objects, small objects often suffer from reduced
visibility and lower image cover rate, leading to fewer appearance cues and increased background interference.
Considering both issues, fast and small object tracking, are therefore still challenging for modern tracking
techniques [Zhang et al., 2022, Haalck et al., 2024, Yu et al., 2020].

In this work, we define and characterize the terms small and fast in the context of object tracking in videos.
Second, we provide a combined and extended dataset, which we term FMO eXtended (FMOX), combining the
four datasets mentioned above with a more informative metadata encoding. This encoding is provided through
a simplified JSON format, allowing the development of Machine Learning dataloaders and pipelines that op-
erate over the entire unified dataset (Section 3). Finally, we assess EfficientTAM (Efficient Track Anything
Model) [Xiong et al., 2024], a recent state-of-the-art technique for tracking, on these datasets, benchmarking
its performance against leading FMO specific techniques from the literature. Code and FMOX JSON are made
available at https://github.com/CVMLmu/FMOX/.

2 Fast-Moving Object Datasets

The following datasets1 are considered here to create FMOX.

1available at https://cmp.felk.cvut.cz/fmo/

https://github.com/CVMLmu/FMOX/
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Falling Objects [Kotera et al., 2020]. The dataset comprises static image frames from video sequences
recorded at 25/30 Frame Per Second (FPS). It comprises a collection of 6 different objects, including box,
cell, key, and rubber, which are dropped from a table, as shown in Figure 1. It includes two sets of images as
high-speed and low-speed sequences, with ground truth trajectories provided in text format.

FMOv2 [Rozumnyi et al., 2017]. This dataset includes 19 sports sequences featuring a variety of small
objects, primarily balls, such as volleyballs and tennis balls, but also objects such as darts and frisbees, with
PNG images of varying lengths. The ground truth trajectories are provided in Matlab for each sequence, with
object mask PNG format and its run length encoding compressed text file. In the dataset, FMO displacement
is evenly spread between 0-150 pixels while bounding boxes between consecutive frames have nearly zero
intersection each time. Figure 2 illustrates samples from the dataset, with the FMOv2 extension sequence
samples highlighted in red.

Figure 1: Falling Objects [Kotera et al., 2020] sam-
ples. Figure 2: FMOv2 [Rozumnyi et al., 2017] samples.

TbD [Kotera et al., 2019]. This dataset comprises striking golf, tennis, volleyball and badminton balls as
well as a falling cube and coin. 14 image sequences are provided with ground-truth trajectories including
12 sequences from sports videos with mostly spherical objects and almost no appearance changes over time.
These 30 FPS low-speed videos are obtained from 240 FPS high-speed videos using temporal averaging. Semi-
manual annotation are applied for creating ground truth by labeling the first frame and applying a tracker, and
then correcting the annotations.

TbD-3D [Rozumnyi et al., 2020]. Similar to TbD, the TbD-3D dataset includes 10 PNG image sequences,
focusing on objects moving in 3D that undergo significant changes in appearance within a single low-speed
videos. 9 of these sequences depict a spherical object, specifically a ball, while the last sequence features a
circular object. The 6D poses (3D position and rotation) of FMOs are provided as ground truth with manually
annotated 3D object location (2D position and radius) and estimated 3D object rotation. Videos were captured
in raw format with a high-speed camera operating at 240 FPS. Both high-speed and low-speed versions of
the image sequences are provided. Ground truths are available in both MATLAB format and text format as
trajectories for the low-speed image sequences. Figure 4 shows a sample frame from each sequence.

3 FMOX

In this section, we define FMOX, a JSON structured annotation format that simplifies the handling of the four
public FMO datasets described in Section 2). It is designed to be easily interpretable and compatible, enabling
researchers and practitioners to quickly understand the structure and content of the data, allowing them to use
the datasets with minimal effort. We also provide object size categories as additional labeling for the datasets.
By considering size as a key factor in the annotations, we aim to enhance the relevance of the dataset for various
research applications, such as small object detection and tracking.



Figure 3: TbD [Kotera et al., 2019] samples. Figure 4: TbD-3D [Rozumnyi et al., 2020] samples.

Object Size. In the computer vision community, the term "small objects" characterizes as covering an area
of 32×32 pixels or less [Tong et al., 2020, Lin et al., 2014, Zhang et al., 2022]. For instance, the Microsoft
COCO benchmark [Lin et al., 2014] categorizes objects into three size categories for evaluation as small,
medium, and large based on the dimensions of the bounding boxes that encapsulate the objects. Object
size categorization facilitates the analysis of detector and model performance across various object sizes [Zhu
et al., 2016]. Table 1 presents object size categories as defined in the literature. Table 2 presents our object size
categories used in FMOX.

Table 3 summarizes the FMOX statistics, primarily focusing on object size information. Additionally, the
listing 1 displays the structure of FMOX for the four analyzed FMO datasets.

Study Resolution Categorization
Traffic sign [Zhu et al., 2016] 2048×2048 small (0,32], medium (32,96], large (96,400]

[Tong et al., 2020] small (0,32], medium (32,96], large (96,∞]
TinyPerson [Yu et al., 2020] 1920×1080 tiny [2,20] : tiny1 [2,8], tiny2 [8,12], tiny3 [12,20], small [20,32], all [2,∞]

[Ying et al., 2025] extremely tiny [1,8), tiny [8,16), small [16,32)

Table 1: Examples of object size category definitions using side length of square bounding box.

Extremely Tiny Tiny Small Medium Large
[1×1,8×8) [8×8,16×16) [16×16,32×32) [32×32,96×96) [96×96,∞)

Table 2: FMOX object size categories.

Fast Movement. Fast-Moving Objects (FMOs) exhibit significant displacement that exceeds their size within
the exposure time across consecutive frames [Rozumnyi et al., 2017]. Movement of FMOs result in pronounced
6D pose changes in sequential frames; specifically, the 3D rotation of the object alters due to high angular ve-
locity, causing it to appear partially visible and manifest as shadowy streaks [Rozumnyi et al., 2020,Rozumnyi
et al., 2017]. According to [Rozumnyi et al., 2017], FMOs are perceived as translucent lines that are larger than
their actual size, which is typically less than 100 pixels. Their motion in the x, y, z planes leads to substantial
changes in their 3D location, affecting their 2D position and radius, as well as the distance between the object
and the camera [Rozumnyi et al., 2020].

This streaking effect results in motion blur, complicating the ability to discern the object’s features, such
as its shape and edges, particularly in a single image [Rozumnyi et al., 2017]. Evaluation results from their
proposed model indicate that significant motion against a distinct background yields the best tracking outcomes.
Furthermore, it has been noted [Rozumnyi et al., 2017] that FMOs may go undetected when their motion is
minimal or when the background color closely resembles that of the object. Additionally, local movements of
large non-FMOs can sometimes be misidentified as FMOs.



Statistical analysis of FMO dataset [Rozumnyi et al., 2017] demonstrated that in two consecutive frames
the overlap of the ground truth bounding boxes is zero. The distance between the center of the object is on
average ten times higher than non-FMO datasets and the displacement is uniformly spread between 0-150
pixels. However, in two consecutive frames of non-FMO datasets, ground truth bounding boxes overlap is
close to one or above 0.5 in 94% of cases, and the displacement is below 10 pixels in 91% of cases. In small
and fast-moving object benchmark [Zhang et al., 2022], it is expected that target center moves by at least 50%
of its size.

FMOX Structure. The four examined FMO datasets exhibit different formats, including variations in anno-
tation styles such as text annotations, segmentation masks and Matlab versions. These variations in annotations
could limit the reproducibility of experiments, which inspired us to develop an easy-to-use JSON format annota-
tion called FMOX, with the goal of improving accessibility, readability, and usability for users. The JSON struc-
ture (shown in Listing 1) contains objects’ bounding boxes as (x1, y1, x2, y2) format and object size category.
To obtain the bounding boxes for FMOv2, the object mask images provided are processed with OpenCV’s con-
tour detection function findContours (with parameters RETR_EXTERNAL, CHAIN_APPROX_SIMPLE
and threshold value of 70). For the TbD dataset, ground-truth trajectory text annotations are utilized to ob-
tain bounding boxes which consist of object annotations for the entire sequence of frames (and not only for
FMO frames). For the Falling Object and TbD-3D datasets, the data loading component of the repository
fmo-deblurring-benchmark2 is leveraged.

Listing 1: Structure of FMOX
1 { "databases": [ {
2 "dataset_name": "Falling_Object",
3 "version": "1.0",
4 "description": "Falling_Object annotations.",
5 "sub_datasets": [
6 {"subdb_name": "v_box_GTgamma",
7 "images": [
8 {
9 "img_index": 1,

10 "image_file_name": "00000027.png",
11 "annotations": [
12 {
13 "bbox_xyxy": [161, 259, 245, 333],
14 "object_wh": [84, 74],
15 "size_category": "medium"
16 }
17 ]},
18 {
19 "img_index": 2,
20 "image_file_name": "00000028.png",
21 "annotations": [ ---- ]
22 } ] } -------- ] }, ------- }

4 EfficientTAM performance on FMOX

To provide a baseline measure of performance, we test Efficient Track Anything Model (EfficientTAM) [Xiong
et al., 2024] on FMOX. No additional training is conducted to the pretrained model efficienttam_s which
we use with its default parameters3. The FMOX ground-truth annotation from the first image of each sequence
is used to initialize the EfficientTAM with a target to track in that sequence. Both point (chosen as the center
of the bounding box) and bounding box initializations were assessed for initializing the target. EfficientTAM

2https://github.com/rozumden/fmo-deblurring-benchmark [Rozumnyi et al., 2021c]
3https://github.com/yformer/EfficientTAM.

https://github.com/rozumden/fmo-deblurring-benchmark
https://github.com/yformer/EfficientTAM


Sequence Name

Analysis

Total
Frame
Number

FMO
Exists
Frame
Number

(Ours)
TIoU (↑)

Object
Size
Levels

Fa
lli

ng
O

bj
ec

t v_box_GTgamma 62 22 0.904 {’medium’: 22}
v_cell_GTgamma 62 14 0.730 {’medium’: 14}
v_key_GTgamma 62 19 0.651 {’medium’: 19}

v_marker_GTgamma 62 11 0.799 {’medium’: 11}
v_pen_GTgamma 62 13 0.558 {’large’: 8, ’medium’: 5}

v_rubber_GTgamma 62 15 0.614 {’medium’: 15}

FM
O

v2

atp_serves+ 655 463 0.135 * {’extremely_tiny’: 1, ’small’: 79, ’tiny’: 383}
blue 53 21 0.775 {’large’: 1, ’medium’: 20}

darts1 75 51 0.738 {’large’: 3, ’medium’: 33}
darts_window1 50 9 0.023 * {’medium’: 5}

frisbee+ 100 68 0.490 {’large’: 16, ’medium’: 4}
hockey+ 350 323 0.527 {’extremely_tiny’: 48, ’small’: 6, ’tiny’: 7}

more_balls + 300 287 Not applied {’medium’: 129, ’small’: 1112, ’tiny’: 49}
ping_pong_paint 120 111 0.036 {’extremely_tiny’: 1, ’medium’: 68, ’small’: 6, ’tiny’: 1}
ping_pong_side+ 445 444 0.629 {’extremely_tiny’: 2, ’medium’: 172, ’small’: 183, ’tiny’: 79}
ping_pong_top+ 350 350 0.396 {’extremely_tiny’: 1, ’large’: 2, ’medium’: 242, ’small’: 59, ’tiny’: 148}

softball 96 35 0.009 * {’medium’: 14, ’small’: 13, ’tiny’: 1}
squash 250 242 NAN {’extremely_tiny’: 129, ’tiny’: 5}
tennis1 116 91 NAN {’extremely_tiny’: 63, ’tiny’: 1}
tennis2 278 274 0.005 {’extremely_tiny’: 151, ’small’: 6, ’tiny’: 62}

tennis_serve_back+ 156 78 0.312 {’extremely_tiny’: 31, ’small’: 10, ’tiny’: 18}
tennis_serve_side 68 35 0.821 {’medium’: 1, ’small’: 12, ’tiny’: 5}

volleyball1 50 33 0.905 {’large’: 12, ’medium’: 1}
volleyball_passing 66 66 0.895 {’large’: 4, ’medium’: 62}

william_tell 119 67 0.783 {’extremely_tiny’: 1, ’large’: 7, ’medium’: 7, ’small’: 5, ’tiny’: 12}

T
bD

VS_badminton_white_GX010058-8 125 40 0.010 * {’tiny’: 56, ’extremely_tiny’: 36, ’small’: 27, ’medium’: 6}
VS_badminton_yellow_GX010060-8 125 57 0.265 {’tiny’: 63, ’extremely_tiny’: 36, ’small’: 19, ’medium’: 7}

fall_cube 28 20 0.902 {’medium’: 4, ’small’: 2, ’tiny’: 5, ’extremely_tiny’: 17}
hit_tennis 57 30 0.878 {’extremely_tiny’: 47, ’tiny’: 9, ’small’: 1}
hit_tennis2 26 26 0.094 * {’extremely_tiny’: 4, ’tiny’: 14, ’small’: 5, ’medium’: 3}

VS_pingpong_GX010051-8 95 58 0.756 {’small’: 36, ’tiny’: 46, ’extremely_tiny’: 13}
VS_roll_golf-gc-12 16 16 0.858 {’small’: 3, ’medium’: 5, ’tiny’: 3, ’extremely_tiny’: 5}

VS_tennis_GX010073-8 118 38 0.807 {’small’: 66, ’tiny’: 32, ’extremely_tiny’: 20}
throw_floor 73 40 0.003 * {’medium’: 15, ’large’: 1, ’small’: 6, ’tiny’: 7, ’extremely_tiny’: 44}
throw_soft 75 60 0.008 * {’small’: 16, ’large’: 1, ’medium’: 13, ’tiny’: 7, ’extremely_tiny’: 38}

throw_tennis 71 45 0.003 * {’medium’: 16, ’small’: 19, ’tiny’: 9, ’extremely_tiny’: 27}
VS_volleyball_GX010068-12 72 41 0.872 {’small’: 11, ’medium’: 5, ’tiny’: 25, ’extremely_tiny’: 31}

T
bD

-3
D

HighFPS_GT_depth2 48 48 0.860 {’large’: 2, ’medium’: 46}
HighFPS_GT_depthb2 81 81 0.823 {’medium’: 81}
HighFPS_GT_depthf1 46 46 0.833 {’medium’: 46}
HighFPS_GT_depthf2 50 50 0.816 {’medium’: 50}
HighFPS_GT_depthf3 37 37 0.816 {’medium’: 37}

HighFPS_GT_out1 57 57 0.899 {’large’: 1, ’medium’: 56}
HighFPS_GT_out2 50 50 0.909 {’medium’: 50}
HighFPS_GT_outa1 47 47 0.923 {’large’: 14, ’medium’: 33}
HighFPS_GT_outb1 41 41 0.830 {’medium’: 41}
HighFPS_GT_outf1 60 60 0.895 {’medium’: 60}

Table 3: FMOX dataset information with Trajectory-Intersection of Union (TIoU) results computed on each
sequence with EfficientTAM [Xiong et al., 2024] (column labelled (Ours); TIoU above 0.5 are in bold font).
Not applied: multi object sequence (request multi initialization with no id for comparison); *: tracker could not
initialized due to high motion blur. NAN is one of the outputs of the TIoU function used. Sequences noted +

indicate that multiple objects occur but labels provided are not with object instance ids.

first performs segmentation on the first frame to then track the detected region in following frames. When the
initialization is point-based, it is often observed that the detection of the target object fails whereas when using



the bounding box, the segmentation correctly captures the object of interest. Hence, tracking is tested with
bounding box initialization on the first frame. Note however, that even with the bounding box, if the frame
exhibits strong motion blur, EfficientTAM can still fail to segment the object to be tracked on the first frame.
The performance of EfficientTAM, as measured by the Trajectory-Intersection of Union (TIoU) [Rozumnyi
et al., 2021a], is reported in Tables 3 and 4, as TIoU is employed in studies of fast-moving objects to evaluate
FMO datasets.

To evaluate the performance of EfficientTAM on four datasets, we utilized the Defmo4 pipeline to perform
TIoU [Rozumnyi et al., 2021a] calculations with FMOX. To feed the pipeline, FMOX object bounding boxes are
transformed into trajectories by calculating the center coordinates of the bounding boxes and then interpolating
according to the number of segment (nsplits) parameter. Coding details are available on GitHub https:
//github.com/CVMLmu/FMOX/.

Datasets
Studies

Defmo
[Rozumnyi
et al., 2021c]

FmoDetect
[Rozumnyi
et al., 2021b]

TbD [Kotera
et al., 2019]

TbD-3D
[Rozumnyi
et al., 2020]

(Ours) with
EfficientTAM

Falling Object 0.684∗∗ N/A 0.539 0.539 0.7093∗

TbD 0.550∗∗ (a) 0.519 (b) 0.715∗ 0.542 0.542 0.4546
TbD-3D 0.879∗ N/A 0.598 0.598 0.8604∗∗

(a) real-time with trajectories estimated by the network, (b) with the proposed deblurring, (N/A) : not defined

Table 4: Average TIoU (↑) performance comparison of our results with EfficientTAM [Xiong et al., 2024] on
FMO datasets with FMOX (column (Ours)). For each dataset, ∗ indicate best result and ∗∗ second best result.
Other Average TIoUs shown are directly extracted from the cited papers.

Overall EfficientTAM performs very well in particular with the Falling Object and TbD-3D datasets (cf.
Fig. 5 and Tab. 4). However, a general issue with the FMOv2 and TbD datasets is that some sequences, could
not be initialized due to strong motion-blurred FMOs (see notation asterisk (*) in Table 3). We believe that
initializing the EfficientTAM with less motion-blurred FMOs frames would yield higher scores. Moreover, for
the FMOv2 dataset, some sequences contain multiple FMOs, such as frisbee and more_balls. However,
without unique IDs for these objects, it is not possible to effectively compare the ground truth with the estimated
results. In the frisbee sequence, two frisbee objects travel nearly the same distance and direction but at
different times. We initialized the tracker for the first object, which covers almost half of the trajectory, resulting
in a TIoU value of approximately 0.5. In the more_balls sequence, multiple balls appear and disappear
repeatedly, which is why we have not included this sequence in our evaluation for the time being. Also, in
FMOX, we have corrected several masks in the ping_pong_paint sequence, which contained only a small
mask of ball from a different tennis game that was interfering with the tracking initialization. Similarly, the
william_tell sequence was distorted by extra masks — specifically, traces left by pieces of the apple that
was shot — misdirecting the trajectory of the main target (bullet). After making these mask corrections, the
TIoU improved to 0.783.

5 Conclusion

We propose an enhanced metadata description file, FMOX, associated with four video datasets featuring Fast
Moving Objects (FMOs). Using FMOX, we evaluate the recently released foundation model, EfficientTAM, for
tracking FMOs. Our experimental results demonstrate its competitive performance and limitations, including
difficulties in initializing tracking for strongly motion-blurred objects, in challenging scenarios. Notably, Effi-
cientTAM achieves superior performance without requiring specialized training or modifications to its default
parameters, yielding average Trajectory-Intersection over Union (TIoU) scores of 0.7093 for Falling Objects

4https://github.com/rozumden/DeFMO.

https://github.com/CVMLmu/FMOX/
https://github.com/CVMLmu/FMOX/
https://github.com/rozumden/DeFMO


and 0.8604 for TbD-3D datasets. These results showcase its effectiveness in tracking FMOs. Future work will
investigate additional metrics to TIoU for performance assessment of trackers with FMOX, as well as evaluat-
ing impact of object size and motion. Some recommendations in using EfficientTAM can be made from this
experiments such as best performance is obtained when the tracker is initialized on a non-blurry object in the
image. Moreover in the cases where the tested sequence displays several instances of the same object (e.g.
tennis balls), then the tracker can be distracted by a competing instance leading to a low TIoU for the sequence.

Figure 5: EfficientTAM estimated trajectories on TbD-3D dataset. Green color indicates ground truth trajectory
while red color for EfficientTAM estimated trajectory. TIoU values are above 0.81 for all sequences. Objects
(mostly balls) quite big, while having motion blur still object is pretty visible all along sequences.
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