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Abstract. Several object tracking pipelines extending Segment Any-
thing Model 2 (SAM2) have been proposed in the past year, where
the approach is to follow and segment the object from a single exem-
plar template provided by the user on a initialization frame. We pro-
pose to benchmark these high performing trackers (SAM2, EfficientTAM,
DAM4SAM and SAMURAI) on datasets containing fast moving objects
(FMO) specifically designed to be challenging for tracking approaches.
The goal is to understand better current limitations in state-of-the-art
trackers by providing more detailed insights on the behavior of these
trackers. We show that overall the trackers DAM4SAM and SAMURAI
perform well on more challenging sequences.
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1 Introduction

Video Object Tracking (VOT) and Video Object Segmentation (VOS) both aim
to follow the object throughout a video or image sequence. VOT, focuses on
locating and following the position of a target object, typically outputting a
bounding box without providing detailed shape or pixel-level information. While
VOS, seeks to identify and segment the object at the pixel level, producing a
mask in each frame, thereby capturing its shape and boundaries [3].

SAM2 is one of the state-of-the-art (SOTA) VOS/VOT methods that uses
object positions given as points, bounding boxes, or masks in any frame to
initialize tracking [3]. Various extentions of SAM2 has been proposed for specific
purposes; for instance DAM4SAM [11] for handling distractors, SAMURAI [13]
managing fast motions, and EfficientTAM [12] for improving efficiency across
various platforms (cf. Section 2.2).

Recent SAM2-based works proposed the DiDi dataset [11] to address distrac-
tors, and the Mosev2 dataset [3] to handle various challenging cases. The study
in [3] utilized SAM2 and its variants, including DAM4SAM [11] and SAMURAI
[13]. Similarly, Aktas et al [1] introduced FMOX, a JSON format designed for
challenging Fast Moving Object (FMO) datasets, and extended the ground truth
annotations to include object size categorization. FMOX [1] has been used to
evaluate the SAM-based tracker EfficientTAM, demonstrating its performance
compared to FMO-specific pipelines [10,5,9,6,8] using the Trajectory Intersection
over Union (TIoU) metric.
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In this paper, we extend the benchmarking of SAM2 and its variants DAM4SAM,
and SAMURAI, alongside EfficientTAM on FMOX dataset through the use of
more standard performance metrics: the Mean Intersection over Union (mIoU)
and the Dice Score metrics. These generalized metrics were prioritized to fa-
cilitate a broader comparison against the wider state-of-the-art literature. The
results indicate that DAM4SAM consistently outperforms the other trackers
on FMO datasets, aligning with similar observations from Mosev2 [3]. On the
other hand, EfficientTAM shows comparatively lower performance among the
SAM2-based trackers examined. In Section 2, we provide a brief background
on the datasets and SAM2-based trackers. Section 3 presents our methodology
for benchmarking along with the tracker initialisation process and performance
analysis. In Section 4, we present and discuss our findings, and finally, Section
5 summarises the conclusions drawn from this study.

2 Background

2.1 Benchmark datasets for object tracking

Despite the abundance of video and image benchmarks, many challenges remain
unaddressed in object tracking which limit their ability to generalize to com-
plex real-world scenarios [3]. The recently proposed MOSEv2 dataset (coMplex
video Object SEgmentation) [3] addresses several of these difficulties by includ-
ing videos with complex scenes featuring object disappearance and reappearance,
heavy occlusions, crowded areas, small objects, poor lighting, and camouflage.
Ding et al [3] use MOSEv2 dataset to evaluate trackers such as SAM2 [7], SAMU-
RAI [13], and DAM4SAM [11].

Even though some challenges remain in standard benchmarks, the overall
results reported often fail to reflect these difficulties, as many trackers do not ef-
fectively capture or address them. This leads to inflated performance scores that
mask the true complexity of real-world tracking scenarios [11]. Addressing this
gap, DAM4SAM [11] focused on distractors and occlusions by carefully selecting
validation and test sequences from major benchmarks including LaSOT [4] and
GOT-10k [2], forming the DiDi dataset to enable more rigorous evaluation.

A similar argument can be made for Fast Moving Objects (FMOs), which
represent a significant yet often overlooked challenge in tracking due to their high
speed and motion-induced blur. These characteristics limit the effectiveness of
many current trackers and are not adequately captured by standard benchmarks.
This is particularly important given that the FMO problem is essential for ad-
vancing tracking performance in practical applications, such as sports analysis,
autonomous driving, and robotics.

We focus here on datasets specifically designed for evaluating FMOs, in-
cluding Falling Object (6 sequences, [5]), TbD (12 sequences, [6]), TbD-3D (10
sequences, [8]) and FMOv2 for which 18 sequences are used here from the 19
available ([9], the sequence more_balls with multiple objects has been excluded
from our analysis due to its multi-instance objects lacking unique IDs [1]). Each
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dataset offers unique features: for instance, TbD-3D extends the challenge by
incorporating 3D object motion and appearance changes. While FMOv2 is de-
signed to be more challenging, with high object displacements and almost no
bounding box overlap (IoU) between consecutive frames. These datasets (collec-
tively named the FMOX dataset) have been recently augmented with ground
truth JSON files to enable straightforward and easy-to-use benchmarking of
trackers [1]. FMO datasets not only include fast-moving objects but also small
objects where the FMOX description can be used to focus on specific object
size categories [1] such as small objects which are challenging for tracking (c.f.
Fig. 1). We provide benchmark results on the FMOX dataset in Section 4 for
showcasing the capabilities of these various trackers.
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Fig. 1. FMOX regroups 4 datasets, with a total 46 sequences used for our benchmark.
Using ground truth information, object size is divided into 5 categories (0 for Extremely
tiny up to 4 for large [1]) with a mean object size is computed for each sequence
(reported on the x-axis). To capture displacement between two successive frames, the
mean IoU between two successive ground truth bounding boxes is also computed for
each sequence (reported on the y-axis - BB represents bounding boxes). In contrast to
Falling Object and TbD-3D, both FMOv2 and TbD datasets are more challenging having
smaller objects with smaller overlapping successive bounding boxes.

2.2 Segment Anything Model 2 (SAM2) Based Trackers

The Efficient Track Anything Model (EfficientTAM) [12], Distractor-Aware Mem-
ory for SAM2 (DAM4SAM) [11], and SAM-based Unified and Robust zero-shot
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visual tracker with motion-Aware Instance-level memory (SAMURAI) [13] track-
ers are SAM2 [7] based trackers. A primary reason for choosing SAM2 [7] based
trackers is that they do not require training or retraining. Each tracker offers
distinct advantages in memory management, performance and adaptation for
visual object tracking. Specifically, DAM4SAM is selected to avoid distractors
near the target object, particularly in scenarios involving multiple instances of
the target object. Meanwhile, SAMURAI is chosen for its integrated motion
modeling and motion-aware instance-level memory, which enhance performance
in crowded scenes with fast-moving or self-occluding objects, where SAM2 en-
counters challenges. EfficientTAM is chosen for its ability to deliver accelerated
performance and reduced computational costs, making it ideal for efficient video
object segmentation across various platforms.

SAM2. The image encoder and memory mechanism are essential components
of SAM2. The image encoder is responsible for extracting features from frames,
while the memory mechanism stores the past n frames to facilitate the segmen-
tation of new frames [12]. This memory mechanism consists of 7 slots for storing
7 frames, with the first slot reserved for the initialized frame. The remaining
6 slots are updated each time a new frame arrives, following a first-in, first-
out (FIFO) queue method [12,11,13]. SAM2 generates three output masks and
selects the one with the highest predicted Intersection over Union (IoU). How-
ever, DAM4SAM [11] noted that simple output masks selection often leads to
the inclusion of distractors from previous frames before a tracking failure occurs
due to the accumulation of misleading information. Additionally, this straight-
forward approach can create further issues in crowded scenes where target and
background objects have similar appearances. Simply relying on the previous n
frames can also result in the storage of misleading features during occlusion [13].

EfficientTAM. EfficientTAM offers a lightweight version of SAM2 to reduce
the high computational complexity of the image encoder and memory module,
particularly for video object segmentation on mobile devices. Unlike the original
SAM2, EfficientTAM adopts a lightweight Vision Transformer (ViT) image en-
coder for improved efficiency. In the memory mechanism, tokens are small pieces
of information that the model uses to remember different parts of an image or
data. Two adjacent tokens are similar, with a small difference between them,
defined by a constant that specifies the acceptable level of similarity. To en-
hance memory efficiency, EfficientTAM avoids storing multiple nearly identical
memory tokens for similar parts of an image or data. Instead, it consolidates
these similar tokens into a single representative token. This means that rather
than keeping separate tokens for each similar part, the model creates one token
that captures the essence of all those similar parts. As a result, the overall set
of tokens becomes a coarser representation of the original, meaning it retains
the same total number of tokens but simplifies the information they represent.
By doing this, EfficientTAM can process information using fewer unique tokens.
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This not only speeds up the calculations but also reduces the amount of memory
required, making the model more efficient.

DAM4SAM. Distractors are elements within the visual field that complicate
the tracking of a target object. These can be categorized into two types: exter-
nal distractors, which are nearby objects that share visual similarities with the
target such as an independent instance of the target object, and internal distrac-
tors, which are similar regions found on the target itself when only a portion of
it is being tracked. The challenge posed by external distractors is particularly
pronounced when the target exits and subsequently re-enters the field of view, as
these similar-looking objects can lead to confusion in accurately identifying the
target. To reduce to distractors failures, the FIFO memory update mechanism
of SAM2 has been replaced with a Distractor-Aware Memory (DAM) manage-
ment strategy. It divides the memory into Recent Appearance Memory (RAM)
and Distractor Resolving Memory (DRM), utilizing a new memory management
protocol for updates. The 3 slots in the RAM are updated every 5 frames with
the FIFO mechanism in case the target object already exists. The DRM, which
accounts for the remaining four slots, fixes the first slot in the initialization frame
as SAM2.

SAMURAI. SAMURAI adapts the SAM2 model to handle distractors and
incorporates motion cues for improved memory management. A Kalman filter-
based motion modeling is integrated to manage fast-moving and occluded objects
in crowded scenes. In addition to the mask affinity score and object occurrence
score, the output of the motion modeling, referred to as the motion score, is used
to select frames for memory, rather than relying on the n-previous frames as
SAM2 does. Instead of relying on a fixed window of frames, a dynamic frame se-
lection process referred to as "Motion-Aware Instance-Level Memory" selectively
chooses only the most reliable frames from a sequence to update the memory. A
frame is considered a valid candidate for memory if it achieves a good affinity
and motion score. If the remaining memory slots have not been filled, the tracked
object is considered to be occluded or has disappeared, and frames are filled ac-
cordingly. Conversely, frames are discarded if they have a poor affinity or motion
score. This approach ensures that the memory is composed of high-confidence
frames.

3 Method for benchmarking

3.1 Pretrained models for benchmarking

All trackers have been initialized via ground-truth bounding boxes and evalu-
ated under their default model configurations: SAM2 and DAM4SAM with the
SAM2.1 Hiera Large (Hiera-L) model, SAMURAI with the SAM2.1 Hiera
Base Plus (Hiera-B+) model, and EfficientTAM with the efficienttam_s
model.
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3.2 Tracker Initialisation

As observed in previous recent works [1,3], initialization of trackers with bound-
ing boxes performs better than using points to provide an exemplar template
to target in the following frames. We have chosen here to initialize all trackers
with the first bounding box of the FMOX-labelled object when it occurs in each
sequence. Of note, sometimes this first bounding box is not in the first frame of
the sequence but occurs in a later frame.

3.3 Tracker scoring

The performance metrics Dice and IoU have been chosen here to compare the
tracker predicted bounding boxes with the ground truth ones. These metrics are
computed on each frame for which FMOX provides a ground truth bounding
box. Frames without a ground truth bounding box, for instance when the object
has disappeared from view, are not taken into account in the computation of
the sequence mean IoU (mIoU) and mean Dice (mDice). IoU, Dice, and their
respective means computed over sequence are values between 0 (for object missed
or not tracked) and 1 (for perfect detection and tracking).

The first frame used for initialization of the tracker is omitted from perfor-
mance calculations because its object location is provided by the FMOX ground
truth. Furthermore, for frames where the tracker fails to predict a bounding box,
the IoU and Dice scores are set to zero, representing the worst possible scores
for these frames. These zeros are included as part of the scores computed for
each sequence in FMOX (mIoU and mDice).

3.4 FMOX for benchmarking trackers

To evaluate the performance of each tracker, we utilise the 46 sequences of the
FMOX dataset, none of which were used during the training process. Hence we
ensure that no data leakage has occurred between the models and the evaluation
dataset.

4 Results and discussion

Quantitative results. Table 1 provides the minimum, maximum, mean, and
median values of mIoU and mDice metrics computed for FMOX dataset for each
of the trackers. Both metrics concur in finding the best overall performance with
DAM4SAM using both the mean and median (equivalent to a robust mean)
computed with all sequences in FMOX. In contrast, EfficientTAM has the worst
performance of the four trackers tested.

In Table 2, we present the performance ranking of each tracker across each
FMO datasets with box plots presented in Figure 2. Our findings align with those
reported in Mosev2 [3], as DAM4SAM consistently outperforms other trackers on
the FMO datasets, achieving the highest median and average mIoU and mDice
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Table 1. Overall results obtained on the 46 sequences in the FMOX dataset. Both
the mean and median, computed with the mDICE and mIoU for each sequence in
FMOX, show DAM4SAM performing best (in bold font and an asterisk (*)). However
the zeros scores observed for the minimum highlight that trackers completely fails for
some sequences, while the maximum scores show that sometimes SAM2 outperforms
other tracker for some sequences. Values range from [0, 1] (0 = bad, 1 = good).

mIoU(↑) SAM2 EfficientTAM DAM4SAM SAMURAI

MIN 0.000 0.000 0.000 0.001
MAX 0.928 0.799 0.819 0.925
MEDIAN 0.591 0.548 0.605* 0.596
MEAN 0.461 0.438 0.505* 0.488

mDice (↑) SAM2 EfficientTAM DAM4SAM SAMURAI

MIN 0.000 0.000 0.000 0.002
MAX 0.962 0.885 0.899 0.961
MEDIAN 0.699 0.684 0.744* 0.736
MEAN 0.545 0.520 0.600* 0.579

scores. This indicates that DAM4SAM delivers both accurate and stable tracking
performance across diverse datasets. EfficientTAM ranks lowest overall, with the
poorest median and mean scores and frequent missed detections, underscoring its
limitations in these challenging scenarios. SAMURAI and SAM2 demonstrates
moderate performance, generally outperforming EfficientTAM. The results in-
dicate that a tracker may perform strongly on some subsequences, while others
exhibit poor or no performance. As highlighted in [1], initializing trackers with
highly motion-blurred frames can adversely affect their performance. Although
EfficientTAM has been shown to perform competitively to pipelines dedicated
to track fast moving objects [1], its primary design focus is on reducing the com-
putational cost of SAM2, making it more suitable for deployment across various
platforms.

Table 2. Model performance rankings per dataset in FMOX based on IoU and Dice
Score. Only FMOv2 and TbD have sequences with object size extremely tiny to small
as per classification provided in FMOX JSON [1]. In addition, ground truth bounding
boxes rarely overlap between frames n and n+ 1 in the FMOv2 and TbD datasets.

Datasets in FMOX Ranking (best to worst)

Falling Object DAM4SAM > SAM2 > SAMURAI > EfficientTAM

TbD-3D SAM2 > DAM4SAM > SAMURAI > EfficientTAM

FMOv2 SAMURAI > DAM4SAM > SAM2 > EfficientTAM

TbD DAM4SAM > SAMURAI > EfficientTAM > SAM2
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Fig. 2. Box plots for mIoU and mDice results on each of the 4 datasets (reported on
the x-axis) included in FMOX. Both FMOv2 and TbD are more challenging as objects
tracked are of smaller sizes with often non overlapping ground truth bounding boxes
between frames n and n+ 1 (cf. Fig. 1). The low minima (=0) highlight the challenge
presented by some sequences in these datasets for the trackers tested.

Compute costs. The computational workload for each of the four trackers
was processed using an NVIDIA GeForce RTX 4090 GPU. All experiments are
conducted on a workstation equipped with a 13th Gen Intel Core i9 processor, 64
GB of RAM, CUDA 12.4.1, and Ubuntu 20.04.6 running on Windows Subsystem
for Linux (WSL). Table 3 reports computation times: as expected EfficientTAM
is the fastest.

Table 3. Execution times (in seconds ↓) for the tested trackers across the 4 FMO
datasets in FMOX. EfficientTAM offers the lowest computational overhead, ranking as
the fastest tracker on all datasets. SAMURAI is the second fastest tracker but also has
good accuracy in contrast to EfficientTAM (cf. Tab. 1).

Dataset
Tracker DAM4SAM SAMURAI EfficientTAM SAM2

Falling Object 67.16 27.45 24.64 51.29
FMOv2 1316.92 515.73 410.07 890.80
TbD 261.42 93.68 67.31 394.44
TbD-3D 168.44 56.32 39.44 203.92

IoU per frames. To better understand the temporal dynamics of each trackers
performance, we analyze the frame-by-frame IoU plots as shown in Figures 3,
4, and 5. These figures highlight the behavior and failure points of each tracker
throughout the sequences. The x-axis represents frame numbers derived from
the sequence indicated in the frame names. Trackers occasionally fail to detect
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objects when they become nearly invisible for one or two frames, most likely due
to motion blur. For instance, for the sequence v_rubber_GTgamma in the Falling
Object dataset, the EfficientTAM tracker exhibited multiple missed detections
(see Fig. 3). Notably, it failed to produce a prediction for frames 39, 40, and 41,
immediately following a frame with strong motion blur (frame 38). While other
trackers show similar transient failures, EfficientTAM is more consistently vul-
nerable to this prolonged loss of tracking following motion blur events. Similarly,
this behavior is observed in Figure 4. While other trackers recovered after just
one or two frames of failure, EfficientTAM exhibited a more prolonged failure,
missing the object for three consecutive frames (35, 36, and 37). On the other
hand, in some sequences, the correlations between the trackers’ performances
are very strong (see top plot Fig. 5). Conversely, in other sequences, one or a few
trackers perform exceptionally well while others perform near zero (see bottom
plot Fig. 5).

30 31 32 33 34 35 36 37 38 39 40 41 42 43
Frame Number

0.0

0.2

0.4

0.6

0.8

1.0

Io
U

Dataset: Falling_Object - Subsequence: v_rubber_GTgamma
DAM4SAM
EfficientTAM
SAM2
SAMURAI

Fig. 3. Tracking performance (IoU) across frames on the sequence v_rubber_GTgamma
from dataset Falling Object. All trackers fails to propose a bounding box for frame
38 while EfficientTAM also fails for frames 39 to 41 included. Corresponding frame
numbers are given on top of each frame, and object (rubber) locations are indicated
with red ground truth bounding boxes.
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Fig. 4. Tracking performance (IoU) across frames on the sequence v_key_GTgamma from
Falling Object dataset. All trackers fail to propose a bounding box for frame 36. For
frame 35, DAM4SAM is the sole successful tracker.

5 Conclusion

We have benchmarked several trackers on several datasets with fast moving
objects, and we have shown that both SAMURAI and DAM4SAM trackers out-
perform SAM2 and EfficientTAM. Using FMOX classification of object sizes [1]
for these datasets, we note that datasets presenting sequences with smaller mov-
ing objects (and in addition with non overlapping ground truth bounding boxes
between successive frames) affect tracker performance as measured by mIoU and
mDice.
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Fig. 5. Examples of tracking performance (IoU) across Frames in sequences
HighFPS_GT_depth2 in TbD-3D dataset (top: all trackers perform well and provided
similar results) and throw_tennis from TbD dataset (bottom: all trackers performed
poorly, with the exception of DAM4SAM; EfficientTAM failed to initialize for tracking
due to the strong motion blur present on the object, resulting in no performance curve
being generated for this sequence in the graph).
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